Structural Transformation of Innovation (CLM2)

Detailed Derivations of the Model and Quantification

Marti Mestieri
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Environment: Intermediate varieties, Bertrand, and markups

Each sector i has a unit continuum of varieties v € [0, 1]. Output aggregator:

1
Yi(t) = exp (/ log Xy (t) dv) .
0
Intermediate technology (frontier firm):

Xiv(t) = in(t) Liv(t)'

Competitive fringe knows a vintage with productivity Q;,/ x. Bertrand =- frontier price:

Pult) = Qij;((t) '

Implication: baseline markup is degenerate at x (no dispersion).
(You can discuss extensions with partial step sizes later.)
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Markup distribution (baseline and a teaching extension)

Baseline in the paper: y;, = x for all i, v, t (degenerate distribution).
Reason: fringe always at Q/ x, and frontier always sets limit price x/Q.

Extension for class discussion: If entrants sometimes improve by a factor A = Qnew /Qold
and fringe is at Qg)q, then limit pricing gives y = min{x, A} and markup dispersion
comes from the distribution of A.

Key object to compute in that extension:

P(p=x)=P(A > x).

(Then use the innovation step-size distribution to get P(A > x).)
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Fréchet recap (the workhorse)

A Fréchet CDF with shape ¢ > 0 and scale K > 0:

F(Q) =exp (—KQ7°), Q>0.

PDF:
£(Q) = KgQ ) exp (—KQ ).
Tail:

P(Q>x)=1—F(x) ~Kx~ ¢ forlarge x.
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First and second moments (levels)

Form < g,

E[Q"] = Km/€r<1 - ’Z) .

Hence (when they exist):

E[Q] = 1<1/€r<1 — (1;) ,  E[Q% = 1<2/€r<1 — 2) .

Variance (requires ¢ > 2):

Var(Q) = K~%/¢ [1‘(1 - z) - r<1 - Dz] .

Most applications take ¢ big enough so moments exist.
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Log statistics (often more stable)

LetY =log Q. Then Q = e¥ and
P(Y <y) =exp (—Ke™%).

This is a Gumbel-type form.

Useful identity: If U = KQ™¢, then U ~ Exp(1).

So: .
logQ = c (logK —logU) .

Hence:

2

(logK+vg), Var(logQ) = n

Hz[l()é; Cz] = 2;;527

1
¢
where v is Euler’s constant.
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Order statistics: max of Fréchets is Fréchet (max stability)

Let Qy,...,Qp iid. with CDF F(Q) = exp(—KQ™¢). Then the maximum M = max; Qi
satisfies:

PM<Q)= HF = exp (—(nK)Q™¢) .
So M ~ Frechet(scale = nK, shape = g).

Key punchline: maxima update the scale parameter, keep the shape. This is why the model
can track dynamics by tracking K;(t) only.
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Spillovers as a max across source sectors

When innovating/adopting in destination sector i, a researcher draws one candidate prior
idea from each source sector j:

Q,j ~ Fréchet(K;(t), ).
Applicability discount/cost ¢;; € (0, 1] maps source quality to usable quality:

i _ Qo
o Pij

The best usable prior idea is the max:

Qo = male();) = max {QOJ} .
] i -

Y
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Distribution of the best usable idea: compute the CDF
Compute P(Q, < g):

P(max% < q) = H]P(on < ¢ijq).
]

] ij

Since on is Fréchet:

P(Qoj < ¢ijq) = exp (—K;(t)(¢iq) ¢) = exp (-Kj(f)%_-g‘fg) :
Multiply across j:
P(Qo < q) = exp (-

xon] ).
]

Define spillover stock:

Si(t) = Z:pl.]_.ng(t).
]

Then: y
Fi(q,t) =exp (=Si(t)q7¢).
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Innovation arrival and the forward equation (setup)

In each sector i, R&D labor is Z;(t). Innovations arrive as a Poisson process with intensity
proportional to Z; ()1 ~¢.
Each innovation proposes a new frontier quality in a variety:

Qnew = Qn : gi/

where:
» Qyis a “new idea draw” (Pareto tail / Fréchet-compatible),
> Q, is the best usable prior idea in sector i (distribution F; above),
> B; € (0,1) is the intertemporal spillover elasticity.

A variety frontier updates if Qnew > Q (current frontier). We want the law of motion for

Fi(Q,t) =P(Qi(t) < Q).
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Note on Poisson processes in economic growth (general)*
A Poisson process {N(t) };>o with (possibly time-varying) intensity A(t) satisfies:
» Independent increments:

N(t+s) —N(t) L N(t).
» Small-time behavior:
Pr(N(t+ At) — N(t) = 1) = A(t)At + o(At),
Pr(N(t+ At) — N(t) > 2) = o(At).
» Expected arrivals:
E[N()] = /Ot As) ds.

» Memorylessness: conditional on no event yet, the remaining waiting time is
exponential.
Why growth models use Poisson processes:
» smooth aggregation of discrete innovations
> tractable law of motion for distributions
» clear mapping between flow rates and hazards
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Poisson processes in this model (innovation and replacement)
In this paper, Poisson processes govern innovation attempts and frontier replacement.
» Innovation attempts in sector i arrive with intensity:
1—
Ai(t) = mizi(H)' 0.
» Each attempt draws a candidate productivity Qnew. A replacement occurs if:

Qnew > Q (current frontier).

» Replacement hazard for a variety with frontier Q:

hi(Q/ t) = Ai(t) Pr(Qnew > Q) & )Li(t) Q_g'

» This hazard representation implies the Kolmogorov forward equation:

at logFi(Q, t) = _hi(Q/ t)/

which preserves the Fréchet form of the distribution.
Economic intuition:
» Poisson arrivals smooth innovation over time
» High-productivity frontiers are harder to displace
> Aggregate growth emerges from many independent micro jumps
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Kolmogorov forward equation: hazard representation

Fix a threshold Q > 0. F;(Q, t) increases when varieties with frontier above Q are “pushed
down” below Q (doesn’t happen), and decreases when varieties with frontier < Q get
upgraded above Q (does happen).

So the forward equation is:

3iFi(Q,t) = —Ai(1) P(upgrade crosses Q | Quu(t) < Q) Fi(Q.1),

where A;(t) o Z;()! 79 is the arrival rate of innovation attempts per variety.
Equivalently, in log form:

o IOgFi(Q, t) = _/\i(t)]P(Qnew >Q | in(t> < Q)
This is the “hazard on the CDF” logic used to get equation (72) in the Appendix.
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Compute the crossing probability: conditioning and integration

We need P(Qpew > Q):

P(Q.uQ," > Q) = /0001[)<Qn > qQﬁi)fi(%r t) dqo.

Assume Pareto tail for Q,, consistent with Fréchet scaling:
P(Qn > x) =17;x ¢ (up to constants).

Then:

-6
T(Qn > qQﬁ’> = 7i <qQﬁ,> = 71Q ¢ gb".

P(Qnew > Q) =17 Q" / lgfz (40, 1) dgo.

Plug in:
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Solve the integral explicitly (the key step)

We have fi(+,t) is Fréchet with scale S;(t) and shape ¢:
Fi(g,t) = exp(=Si(t)g ).
So the moment formula gives, for m = B¢ < ¢:
| a#i(a.0) dg = ElP<] = 5P T(1 = ).
(Here we used E[g"] = S™"/¢T'(1 — m/¢) and set m = Bc.)

Therefore:

P(Qnew > Q) = 7; T(1 — B;) Si(£)Pi Q.
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Close the forward equation and recover Fréchet preservation

Put it back into:
dtlog Fi(Q,t) = —Ai(H)P(Qnew > Q).
Using A;(t) o Z;(t)! ¢

dlog Fi(Q,t) = — [T (1 — Bi)] Zi(H) P si(hfiQe.

constant

This has the form: '
ot 10gFi(Q, t) = —Ki(t) Q_g.

Integrate over time:
logF;(Q,t) = —K;(t)Q™°,  Fi(Q,t) = exp(—K;()Q™*).

Thus the distribution stays Fréchet, and all dynamics are in K;(t).
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Law of motion for K;()

From the coefficient mapping above:
Ki(t) =z S0P, sit) = Lo oK ().
J

This is Proposition 2 in the main text:

Fi(Q 1) = exp(~Ki()Q %), Ki(t) = miZi(t)'~?s;(t)P.

(Up to notational constants absorbed into #;.)
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Probability a new idea replaces the incumbent (explicit)

Fix a variety with current frontier Q. A new innovation attempt generates Qnew = QnQp'.
Replacement event:

{replace} = {Qnew > Q}

Conditional on Q, = g,, we have:
praiel 11 -p(00> €) -n g
qo

Integrate over g,:

P(replace) = ﬁiQ_g]E[qgig] = 7;QT(1— B;)S;(t)Pr.

So: replacement hazard is proportional to Q¢ (harder to beat high frontiers).

18/55



Patenting cutoff: map to a simple probability

Patenting rule: an innovation is patented only if its step size exceeds ¥;(t):

Cnew <
0 > ¥i(t).

Given Pareto tails, this produces a scaling:

K;(t)
Ki(t)’

PAT;(t) = ¥,(t) ¢

Interpretation: ¥;(t) shifts the observed patent rate without changing real innovation.
(This is Lemma 1’s patent equation.)
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Citation probabilities: gravity form from the max problem

A patent in destination sector j cites the source sector i whose applicability-adjusted draw

is maximal: 3

i= argmax {%’k} .

ik
Compute:
mi(t) =P Qi > max Qo .
g Gji k£ Pk
With Fréchet draws, the standard EK result:
0
ni\j(t) AT
T i)

This is the citation share equation in Lemma 1.
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R&D arbitrage (free entry): where Z; comes from

Let V;(t) be the expected value of owning a frontier variety in sector i. Free entry into
R&D implies expected marginal cost equals expected marginal benefit:

niZi(t)?Si(1)Pvi(t) = 1.
Rearrange:
Zi(t) = (Wisi(t)ﬁivi(t)>1/¢'
Interpretation:

» Push: 171-553 " (innovation productivity and spillovers)
» Pull: V;(t) (market size / profits path)
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Reminder: HJB equations in continuous-time growth (general)*

In continuous time, dynamic optimization problems are characterized by a
Hamilton-Jacobi-Bellman (HJB) equation.
Let V(x, t) be the value function for a state x(t) evolving as:

Then V (x, t) satisfies:
rV(x,t) = max {n(x, u, t) + 0 V(x,t) - f(x,u,t) + 0 V(x,t) }
u

Interpretation:
» left-hand side: opportunity cost of holding the asset
» right-hand side: flow payoff + capital gains
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Where the H]JB comes from (derivation sketch)*

Start from the Bellman equation over a small interval At:

V(x,t) = max {n(x, u,t)At + e*rAtV(x + X AL, t+ At) } .

u

First-order expansion:
V(x+ XAt t+ At) = V(x,t) + 0V - X At + 0;V At.

Subtract V(x, t) from both sides, divide by At, and let At — 0:

rV(x,t) = max {n(x, u,t) +0xV-f(x,u,t) +0:/V(x, t)}

u

Key point: H]B is just the continuous-time envelope condition.
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HJB with Poisson arrival and creative destruction
In growth models with innovation, the state can change discretely via Poisson events.
Suppose:

» flow profit: 7t(t)

» discount rate: r

» innovation arrival with intensity A(t)

» replacement probability upon arrival
Then the Bellman equation over At becomes:

V(t) = () At 4™ [(1 — M)AV (E+ At) + A(H) ALV (E 4 At)} .
Rearranging and taking At — 0 yields:
V() — V() = (t) — A (V(E) — V™ (1)),
Economic meaning:
» 7(t): flow monopoly profits

> A(t) term: expected capital loss from creative destruction

This is exactly the structure used in the paper.
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From the general HJB to a per-idea HJB

Start from the standard HJB with Poisson creative destruction:
rVit) = Vi(t) = mi(t) — Ai(t) (Vi(t) — Vi€V (t).

Key modeling choice in this paper:
» V;(t) is defined as the value per frontier idea
» Frontier ideas are replaced one-for-one by new ideas
» All frontier ideas are ex ante symmetric

As a result, creative destruction does not destroy value at the sector level: it reallocates
value across ideas.
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Why the hazard term disappears

Let K;(t) denote the mass of frontier ideas in sector i.
> Total sector value:  K;(t) V;(t)
» Total sector profits:  IT;(t)
» Profit per frontier idea:  71;(t) = I1;(¢)/K;(¢)
Innovation replaces old ideas with new ones:
» individual ideas lose value,
» but the mass of ideas K;(t) grows over time.

Tracking value per idea absorbs creative destruction into K;(t). The HJB therefore simplifies
to:
. IT;(t)
HVi(t) = Vi(t) = ===
MOV = Vilt) = 2o

Interpretation: faster growth of K;(t) shortens effective monopoly duration.
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Value function dynamics: HJB-style ODE

Value per frontier idea evolves as:

Interpretation of the RHS:
» IT,(t) is total sector profits (a revenue share times expenditure).
» Divide by K;(t) because K; is the measure of frontier draws (“mass” of ideas).

» Faster innovation (higher K; growth) shortens expected monopoly duration
(competition effect).
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Step 1: Define the object and the survival probability

Fixed varieties, evolving frontier distribution. Varieties are v € [0, 1] (fixed). In sector i,
the frontier productivity across varieties has Fréchet CDF

Fi(Qt) = Pr(Qi(t) < Q) = exp( — Ki(t) Q7Y),
where K;(t) is the Fréchet scale (“knowledge stock”) and 6 > 0 is the shape/dispersion.

Key max-stability implication. The frontier at date s > ¢ is the max of:
» the incumbent frontier draw at f, equal to Q;
» all new candidate draws arriving between t and s.

By Fréchet max-stability, the max of new draws over (f, s] is Fréchet with scale
Ki(s) — K;(t), hence:

Pr(no new draw exceeds Q between t and s | Q) = exp( — (Ki(s) — Ki(t))Q7%).

This is the survival probability of an idea with quality Q from ¢ to s.
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Step 2: Value of an incumbent with quality Q and aggregation over Q
Let Il;(s) be total sector profits at time s. Since the frontier distribution is indexed by
K;(s), the model’s accounting implies the flow profit per frontier draw is

(See the appendix definition of V; and the step converting profits into I'T;(s)/K;(s).)

Value conditional on frontier quality Q at time #:

Vi = [ mits) exp( - [

discount

) dr) exp( — (Ki(s) — Ki(£)Q ") ds.

survival

Value per frontier idea (average over frontier draws at t):

Vi(t) = Egor.n [Vi(Q 1)] = /t m(s) e KO By o [ (ORI g

*
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Step 3: Compute the expectation (x) explicitly

We compute
(%) = Boron [efa@(s)sz-(t))g-“] _ /0 " e (KG)-K0)Q gF,(Q, ).
Using F;(Q,t) = exp(—K;(t)Q~?), we have
dFi(Q.1) = d(exp(~Ki()Q ™))

Now apply the change of variables y = Q7. Then F;(Q,t) = exp(—K;(t)y) and (as a
Stieltjes integral)

® ~(Ki(s)=Ki(1))Q? g _
| e dFi(Q,1) /y

But d(e Kit)y) = —K;(t)e KDY dy, hence

® (Kl ~Ki(D)y g ( p—Kil)y
» e d (e ) .

_ [ K&K (oKDY gy — e (py [ oK)y gy — KilE)
(%) /O e K;(H)e K0 dy = K;(t) /0 KON dy = S

This is the crucial “competition effect” term: faster growth in K; lowers survival.
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Step 4: Close form for V;(t) and the HJB-style ODE
Plugging (%) = K;(t)/K;(s) into the expression for V;(t):

vi(t):/tco (s) e o / K o JEr@ T g

This is precisely the appendix definition (eq (77) there) and it zmplies eq. (23).

Differentiate to get the ODE. Let D(f, s) = ¢ /7747 Then

Ki(S)

Differentiate using Leibniz rule:

Vi) = — i) +/t°° i) 9 1y ) as.

Ki(t) Kl'(S) ot
Since %D(t,s) =r(t)D(t,s), we obtain
Vi) =~ FHOVID = Vi)~ Vi) = -

This shows the result in the slide “Value function dynamics: H]B-style ODE.”
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Profit decomposition (price, competition, income effects)

Using demand + pricing, the paper shows relative profits per idea satisfy:

Hi(t)/Ki(t) _ Kj(t) . <Kf(t) ) e . C(t)(lftr)(sﬁej) )

—_———

income

IT(t) /Kj(t) &(,f_)/ Ki(t)

competition price

Three effects:
» competition: faster innovation lowers duration
» price: higher K lowers price index (depending on o)
> income: nonhomotheticity drives shifting demand
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Sectoral price index: definition
Variety price under Bertrand competition with fringe vintage:

_ X
in(t>

Piy (t)
Sectoral output uses a log aggregator:
1
Vi) = exp( [ 1o Xt} ), Xa(t) = Qult)Li1).
Hence the sectoral price index is the geometric mean:
1 1
log P;(t) = / log P;,(t) dv = log x — / log Qj, (t) dv.
0 0

With a continuum of varieties and i.i.d. frontier draws:

log P;(t) = log x — E[log Q;(t)].
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Log-moment of the Fréchet distribution

Suppose frontier productivities satisfy:

Fi(Q 1) = exp(=Ki(H)Q ™) .

Define the transformation:

Uu=K;(HQ .
Then:
Pr(U > 1) = Pr(Q < (Kl-/u)l/g) - Fi<(Ki/u)1/9,t) — e
S0:
U ~ Exp(1).
Hence:

logQ = (log K;(t) — logU), ]E[]og ul = —vg,

1
¢
where E is the Euler-Mascheroni constant.
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Closed-form sectoral price index

Taking expectations:
1
Ellog Qi(1)] =  (log Ki(t) +7e)
Substitute into the price index:
1
log P;i(t) = log x — c (log Ki(t) + k) -

Exponentiating:
P = x exp (5 ) o) Ve

Key implication: all time-variation in prices is driven by K;(t).
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Price inflation and knowledge growth

Let p;(t) = log P;(t) and k;(t) = log K;(t).
From the closed form:

e 1
t)=logx———-
pi(t) &X c c
Differentiate: (0
) _ 1o 1K(t
pilt) = =) =~

i(t)

Interpretation: faster idea accumulation = faster relative price declines.

36/55



Model objects and observables

Model objects (sector 7):
» K;(t): Fréchet scale of frontier productivities (knowledge stock)
> K;(t)/K;(t): growth rate of frontier knowledge
> ¢;: applicability of knowledge from sector j to sector i
» B;: elasticity of innovation productivity to external knowledge
> ¥;(t): patenting cutoff (minimum quality improvement to patent)
Observed data:
» Patent counts by sector and year
» Citation shares across sectors
» Sectoral R&D expenditure
» Sectoral output and expenditure shares
Goal: map patents and citations into K;(t), B;, ¢;;, and ¥;(t).
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Patents as selected frontier innovations

In the model, innovation arrivals are Poisson. Each arrival generates a quality
improvement:
ZX = CQHEVV.
Qold

Assumption (tail behavior): Quality improvements have Pareto tails:

Pr(A >x) = x 9, x> 1.
Patenting rule: An innovation in sector i is patented if:
A>Yi(t),

where ¥;(t) > 11is a sector- and time—specific patenting cutoff.
Probability an innovation is patented:

Pr(patent; | t) = Pr(A > ¥,(t)) = ¥;(t) .

Key implication: Patents are a selected sample of frontier innovations.
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Recovering innovation rates from patent data
Let:
» K;(t) = flow of frontier innovations (model object),
> PAT;(t) = observed patent counts (data).
Because only a fraction ¥;(t) ~? of innovations are patented:

PAT;(t) = ¥;(t)~* Ki(#).

Equivalently,

Interpretation:
» Patent counts do not identify K;(t) directly.
» They identify K;(t) up to a selection wedge ¥;(t) 9.
» Changes in patenting standards or behavior are absorbed by ¥;(t).

Empirical strategy: Allow ¥;(t) to vary over time and sector, and use the model structure
to separately discipline K;(t).
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How the knowledge stock K;(f) is computed

Step 1: What patents measure (flows). Patent counts in sector i at time ¢ satisfy:

PAT;(t) = ¥i(t) P Ki(t),

> K;(t) = flow of frontier innovations (model object),
> ¥;(t) = patenting cutoff (selection into patents),
» 0 = Pareto tail parameter.
Thus, patents identify innovation flows up to a selection wedge.

Step 2: Back out innovation flows. Given ¥;(t),
Ki(t) = ¥,(1)° PAT,(1).

Step 3: Accumulate flows into a stock.
The Fréchet scale (knowledge stock) is constructed as:

Ki(t):Ki(O)—F/OtKi(s) +/ ¥;(s)? PAT;(s) ds.

Key point: K;(t) is a latent stock inferred by accumulating patent-adjusted innovation
flows. Its level is identified up to a normalization, but ratios and growth rates are pinned
down.
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Citation probabilities and applicability parameters

In the model, a new innovation in sector j builds on the best available idea:

. on
1= arg max .
k| Pk

With Fréchet frontier draws, the probability that sector j cites sector i is:

¢y "Ki(t)

mii(t) =Pr(i | j) = W

Key result: Citation shares satisfy a gravity equation in knowledge stocks and applicability
costs.
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Estimating applicability ¢;; from citations

Taking logs relative to within-sector citations:

log nij(t) —log njj(t) = —0log¢; + log K;(t) — log Kj(t).

Empirical implementation:
» 71;i(t) observed from citation matrices
» K;(t) recovered from patent-adjusted innovation flows
> 0 taken from the literature or estimated

This identifies $ij up to normalization ¢ =1
Interpretation:

> lower ¢;; = ideas from i are more applicable to j

» manufacturing typically has low ¢;; across many sectors
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Recovering spillover elasticities f3;
The innovation technology in sector i is:

Bi
Ki(t) = niZi(t)'~ <Z¢;9K ) :

Define the spillover index:

= Z¢;9Kj(t)
)

Taking logs and differences:

AlogK;(t) = (1 — a)Alog Z;(t) + BiAlog S;(t) + Alog ;.

Given:

> K;(t) from patent-adjusted innovation rates

» Z(t) from R&D data

> S;(t) from citation-weighted knowledge stocks
we identify the spillover elasticity ;.
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Mapping data to model objects (corrected)

Model object Identified from data

PAT;(t) Observed patent counts (data)

K;(t) Patent counts adjusted for selection ¥;(t)

K;(t) Time integral of K;(t) (normalized)

¥i(t) Patenting intensity conditional on R&D and output

oij Cross-sector citation shares 77;;(t)

Bi Response of K;(t) to spillover index S;(t)
Interpretation:

» Patents identify flows of frontier innovation, not knowledge stocks.
> Knowledge stocks K;(t) are inferred by accumulating those flows.
» Citations depend on relative K;(t), so normalization does not matter.
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State variables, controls, and equilibrium system

State variables (knowledge stocks):
ki(t) = log K;(t), i=1,...,L

Controls:

c(t) =logC(t), Ai(t) = 200 Y Ai(t) =1

Equilibrium dynamics can be written compactly as:

x(t) = f(x(t), u(t), £0),

where:
X(t) = (kll"'rklrc)r M(t) = (/\1,...,)\1_1).
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Why collocation instead of shooting

Main challenges:
» High-dimensional controls A;(#)
» Non-autonomous dynamics (expenditure shares shift over time)
» Stable manifold selection is non-trivial
Collocation strategy:
» Approximate unknown paths with smooth splines
» Enforce equilibrium conditions pointwise on a grid
» Impose initial and terminal (CGP) conditions directly
This avoids instability and sensitivity typical of shooting methods.
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Spline approximation of paths
Choose a horizon [0, T] and knots:

O=m<nu<---<ty=T.

Approximate paths using B-splines:

My M,
ki(t) ~ X_;laimBm(t), c(t) ~ X_;lmem(t).

Enforce simplex constraints on R&D shares via softmax:

)\'(t — eXp(ZmdimBm(t)) )
i Z] exp (Zm dijm(t))

Derivatives are analytical:

ki(t) =Y aimBu(t), ¢(t) =) buBu(t).
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Collocation residuals

Model-implied dynamics:
ki(t) = gi(k(t),c(t), A(t),£0),  &(t) = g(-).
Define residuals at time #:
Ryi(t) = KPPX() = gi(-),  Re(t) = EPPYX(t) — ge ().

Only I — 1 share equations are needed, since }; A;(f) = 1 is enforced by construction.
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Objective function: nonlinear least squares

Choose collocation nodes {t, }I_, (e.g. Gauss-Lobatto).
Solve:

min an ZRk,tn + Rc(ty) +ZRAztn
abd = i=1 i=1

This is a standard nonlinear least-squares problem over spline coefficients.
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Boundary and terminal conditions

Initial conditions (from calibration/data/searched over really in the code):
ki(0) = kig.
Terminal anchoring to the constant-growth path (CGP):
ki(T) ~ KSCF, o(T) =g, A(T) ~ ASCE.
Impose via penalty terms:

Or = wi Y (ki(T) = k) + we(6(T) = §°)* +wp Y (A(T) = AFF)2.

i
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Choice of knots and collocation nodes

Practical recommendations:

» Use a non-uniform knot grid:

» dense near f = 0 (fast transitions)
» sparse near T (CGP convergence)

» Typical choice: M = 15-25 knots per state
» Use Gauss-Lobatto nodes within each interval
This balances accuracy and computational cost.
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Normalization for numerical stability

Normalize by CGP trends:

Then terminal conditions become:

This dramatically improves conditioning and convergence.

ki(t) = ki(t) —kSCPt, B(t) = c(t) — g*t.
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Jacobian computation and solvers

Implementation tips:

» Use automatic differentiation if available

» Otherwise, exploit analytical derivatives of splines

» Feed Jacobian to a trust-region or Levenberg—Marquardt solver
Collocation works best with:

» accurate Jacobians

> tight but not excessive terminal penalties
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Diagnostics and convergence checks

Always report:
» max residual norm: max; |R(t,)||
» drift at terminal time: ||%(T) — x“CP|

» robustness to:

» more knots
» longer horizon T
» alternative initial guesses

A good solution is stable to all three.
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Takeaways

» Fréchet structure gives closed-form prices and clean dynamics

» Transitional dynamics are smooth but high-dimensional

» Collocation turns equilibrium into a transparent residual-minimization problem
» Every numerical step has an economic interpretation
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