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Environment: Intermediate varieties, Bertrand, and markups

Each sector i has a unit continuum of varieties v ∈ [0, 1]. Output aggregator:

Yi(t) = exp
(∫ 1

0
log Xiv(t)dv

)
.

Intermediate technology (frontier firm):

Xiv(t) = Qiv(t) Liv(t).

Competitive fringe knows a vintage with productivity Qiv/χ. Bertrand ⇒ frontier price:

Piv(t) =
χ

Qiv(t)
.

Implication: baseline markup is degenerate at χ (no dispersion).
(You can discuss extensions with partial step sizes later.)
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Markup distribution (baseline and a teaching extension)

Baseline in the paper: µiv = χ for all i, v, t (degenerate distribution).
Reason: fringe always at Q/χ, and frontier always sets limit price χ/Q.

Extension for class discussion: If entrants sometimes improve by a factor ∆ ≡ Qnew/Qold
and fringe is at Qold, then limit pricing gives µ = min{χ, ∆} and markup dispersion
comes from the distribution of ∆.
Key object to compute in that extension:

P(µ = χ) = P(∆ ≥ χ).

(Then use the innovation step-size distribution to get P(∆ ≥ χ).)
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Fréchet recap (the workhorse)

A Fréchet CDF with shape ς > 0 and scale K > 0:

F(Q) = exp
(
−KQ−ς

)
, Q > 0.

PDF:
f (Q) = KςQ−(1+ς) exp

(
−KQ−ς

)
.

Tail:
P(Q > x) = 1 − F(x) ∼ Kx−ς for large x.
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First and second moments (levels)

For m < ς,

E[Qm] = K−m/ς Γ
(

1 − m
ς

)
.

Hence (when they exist):

E[Q] = K−1/ςΓ
(

1 − 1
ς

)
, E[Q2] = K−2/ςΓ

(
1 − 2

ς

)
.

Variance (requires ς > 2):

Var(Q) = K−2/ς

[
Γ
(

1 − 2
ς

)
− Γ

(
1 − 1

ς

)2
]

.

Most applications take ς big enough so moments exist.
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Log statistics (often more stable)

Let Y = log Q. Then Q = eY and

P(Y ≤ y) = exp
(
−Ke−ςy) .

This is a Gumbel-type form.
Useful identity: If U ≡ KQ−ς, then U ∼ Exp(1).
So:

log Q =
1
ς
(log K − log U) .

Hence:

E[log Q] =
1
ς
(log K + γE), Var(log Q) =

π2

6ς2 ,

where γE is Euler’s constant.
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Order statistics: max of Fréchets is Fréchet (max stability)

Let Q1, . . . , Qn i.i.d. with CDF F(Q) = exp(−KQ−ς). Then the maximum M = maxk Qk
satisfies:

P(M ≤ Q) =
n

∏
k=1

F(Q) = exp
(
−(nK)Q−ς

)
.

So M ∼ Frećhet(scale = nK, shape = ς).
Key punchline: maxima update the scale parameter, keep the shape. This is why the model
can track dynamics by tracking Ki(t) only.
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Spillovers as a max across source sectors

When innovating/adopting in destination sector i, a researcher draws one candidate prior
idea from each source sector j:

Q̃oj ∼ Fréchet(Kj(t), ς).

Applicability discount/cost ϕij ∈ (0, 1] maps source quality to usable quality:

Q(i)
oj =

Q̃oj

ϕij
.

The best usable prior idea is the max:

Qo = max
j

Q(i)
oj = max

j

{
Q̃oj

ϕij

}
.
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Distribution of the best usable idea: compute the CDF
Compute P(Qo ≤ q):

P

(
max

j

Q̃oj

ϕij
≤ q

)
= ∏

j
P(Q̃oj ≤ ϕijq).

Since Q̃oj is Fréchet:

P(Q̃oj ≤ ϕijq) = exp
(
−Kj(t)(ϕijq)−ς

)
= exp

(
−Kj(t)ϕ

−ς
ij q−ς

)
.

Multiply across j:

P(Qo ≤ q) = exp

(
−
[
∑

j
Kj(t)ϕ

−ς
ij

]
q−ς

)
.

Define spillover stock:
Si(t) ≡ ∑

j
ϕ
−ς
ij Kj(t).

Then:
F̃i(q, t) = exp

(
−Si(t) q−ς

)
.
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Innovation arrival and the forward equation (setup)

In each sector i, R&D labor is Zi(t). Innovations arrive as a Poisson process with intensity
proportional to Zi(t)1−ϕ.
Each innovation proposes a new frontier quality in a variety:

Qnew = Qn · Qβi
o ,

where:
▶ Qn is a ”new idea draw” (Pareto tail / Fréchet-compatible),
▶ Qo is the best usable prior idea in sector i (distribution F̃i above),
▶ βi ∈ (0, 1) is the intertemporal spillover elasticity.

A variety frontier updates if Qnew > Q (current frontier). We want the law of motion for
Fi(Q, t) ≡ P(Qiv(t) ≤ Q).
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Note on Poisson processes in economic growth (general)*
A Poisson process {N(t)}t≥0 with (possibly time-varying) intensity λ(t) satisfies:
▶ Independent increments:

N(t + s)− N(t) ⊥ N(t).

▶ Small-time behavior:

Pr(N(t + ∆t)− N(t) = 1) = λ(t)∆t + o(∆t),

Pr(N(t + ∆t)− N(t) ≥ 2) = o(∆t).
▶ Expected arrivals:

E[N(t)] =
∫ t

0
λ(s) ds.

▶ Memorylessness: conditional on no event yet, the remaining waiting time is
exponential.

Why growth models use Poisson processes:
▶ smooth aggregation of discrete innovations
▶ tractable law of motion for distributions
▶ clear mapping between flow rates and hazards
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Poisson processes in this model (innovation and replacement)
In this paper, Poisson processes govern innovation attempts and frontier replacement.
▶ Innovation attempts in sector i arrive with intensity:

λi(t) = ηiZi(t)1−ϕ.

▶ Each attempt draws a candidate productivity Qnew. A replacement occurs if:

Qnew > Q (current frontier).

▶ Replacement hazard for a variety with frontier Q:

hi(Q, t) = λi(t)Pr(Qnew > Q) ∝ λi(t)Q−ς.

▶ This hazard representation implies the Kolmogorov forward equation:

∂t log Fi(Q, t) = −hi(Q, t),

which preserves the Fréchet form of the distribution.
Economic intuition:
▶ Poisson arrivals smooth innovation over time
▶ High-productivity frontiers are harder to displace
▶ Aggregate growth emerges from many independent micro jumps
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Kolmogorov forward equation: hazard representation

Fix a threshold Q > 0. Fi(Q, t) increases when varieties with frontier above Q are ”pushed
down” below Q (doesn’t happen), and decreases when varieties with frontier ≤ Q get
upgraded above Q (does happen).
So the forward equation is:

∂tFi(Q, t) = −λi(t)P(upgrade crosses Q | Qiv(t) ≤ Q) Fi(Q, t),

where λi(t) ∝ Zi(t)1−ϕ is the arrival rate of innovation attempts per variety.
Equivalently, in log form:

∂t log Fi(Q, t) = −λi(t)P(Qnew > Q | Qiv(t) ≤ Q).

This is the ”hazard on the CDF” logic used to get equation (72) in the Appendix.
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Compute the crossing probability: conditioning and integration

We need P(Qnew > Q):

P(QnQβi
o > Q) =

∫ ∞

0
P

(
Qn >

Q

qβi
o

)
f̃i(qo, t)dqo.

Assume Pareto tail for Qn consistent with Fréchet scaling:

P(Qn > x) = η̃i x−ς (up to constants).

Then:

P

(
Qn >

Q

qβi
o

)
= η̃i

(
Q

qβi
o

)−ς

= η̃i Q−ς qβiς
o .

Plug in:

P(Qnew > Q) = η̃i Q−ς
∫ ∞

0
qβiς

o f̃i(qo, t)dqo.
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Solve the integral explicitly (the key step)

We have f̃i(·, t) is Fréchet with scale Si(t) and shape ς:

F̃i(q, t) = exp(−Si(t)q−ς).

So the moment formula gives, for m = βiς < ς:∫ ∞

0
qβiς f̃i(q, t)dq = E[qβiς] = Si(t)βi Γ(1 − βi).

(Here we used E[qm] = S−m/ςΓ(1 − m/ς) and set m = βiς.)
Therefore:

P(Qnew > Q) = η̃i Γ(1 − βi) Si(t)βi Q−ς.
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Close the forward equation and recover Fréchet preservation

Put it back into:
∂t log Fi(Q, t) = −λi(t)P(Qnew > Q).

Using λi(t) ∝ Zi(t)1−ϕ:

∂t log Fi(Q, t) = − [η̃iΓ(1 − βi)]︸ ︷︷ ︸
constant

Zi(t)1−ϕ Si(t)βi Q−ς.

This has the form:
∂t log Fi(Q, t) = −K̇i(t)Q−ς.

Integrate over time:

log Fi(Q, t) = −Ki(t)Q−ς, Fi(Q, t) = exp(−Ki(t)Q−ς).

Thus the distribution stays Fréchet, and all dynamics are in Ki(t).
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Law of motion for Ki(t)

From the coefficient mapping above:

K̇i(t) = ηi Zi(t)1−ϕ Si(t)βi , Si(t) = ∑
j

ϕ
−ς
ij Kj(t).

This is Proposition 2 in the main text:

Fi(Q, t) = exp(−Ki(t)Q−ς), K̇i(t) = ηiZi(t)1−ϕSi(t)βi .

(Up to notational constants absorbed into ηi.)
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Probability a new idea replaces the incumbent (explicit)

Fix a variety with current frontier Q. A new innovation attempt generates Qnew = QnQβi
o .

Replacement event:
{replace} = {Qnew > Q}.

Conditional on Qo = qo, we have:

P(replace | qo) = P

(
Qn >

Q

qβi
o

)
= η̃i Q−ς qβiς

o .

Integrate over qo:

P(replace) = η̃iQ−ςE[qβiς
o ] = η̃iQ−ςΓ(1 − βi)Si(t)βi .

So: replacement hazard is proportional to Q−ς (harder to beat high frontiers).
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Patenting cutoff: map to a simple probability

Patenting rule: an innovation is patented only if its step size exceeds Ψi(t):

Qnew

Q
≥ Ψi(t).

Given Pareto tails, this produces a scaling:

˙PATi(t) = Ψi(t)−ς K̇i(t)
Ki(t)

.

Interpretation: Ψi(t) shifts the observed patent rate without changing real innovation.
(This is Lemma 1’s patent equation.)
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Citation probabilities: gravity form from the max problem

A patent in destination sector j cites the source sector i whose applicability-adjusted draw
is maximal:

i = arg max
k

{
Q̃ok
ϕjk

}
.

Compute:

πi|j(t) ≡ P

(
Q̃oi
ϕji

≥ max
k ̸=i

Q̃ok
ϕjk

)
.

With Fréchet draws, the standard EK result:

πi|j(t) =
ϕ
−ς
ji Ki(t)

∑k ϕ
−ς
jk Kk(t)

.

This is the citation share equation in Lemma 1.
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R&D arbitrage (free entry): where Zi comes from

Let Vi(t) be the expected value of owning a frontier variety in sector i. Free entry into
R&D implies expected marginal cost equals expected marginal benefit:

ηiZi(t)−ϕSi(t)βiVi(t) = 1.

Rearrange:

Zi(t) =
(

ηiSi(t)βiVi(t)
)1/ϕ

.

Interpretation:

▶ Push: ηiS
βi
i (innovation productivity and spillovers)

▶ Pull: Vi(t) (market size / profits path)
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Reminder: HJB equations in continuous-time growth (general)*

In continuous time, dynamic optimization problems are characterized by a
Hamilton–Jacobi–Bellman (HJB) equation.
Let V(x, t) be the value function for a state x(t) evolving as:

ẋ(t) = f (x(t), u(t), t).

Then V(x, t) satisfies:

rV(x, t) = max
u

{
π(x, u, t) + ∂xV(x, t) · f (x, u, t) + ∂tV(x, t)

}
.

Interpretation:
▶ left-hand side: opportunity cost of holding the asset
▶ right-hand side: flow payoff + capital gains
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Where the HJB comes from (derivation sketch)*

Start from the Bellman equation over a small interval ∆t:

V(x, t) = max
u

{
π(x, u, t)∆t + e−r∆tV

(
x + ẋ ∆t, t + ∆t

)}
.

First-order expansion:

V(x + ẋ ∆t, t + ∆t) ≈ V(x, t) + ∂xV · ẋ ∆t + ∂tV ∆t.

Subtract V(x, t) from both sides, divide by ∆t, and let ∆t → 0:

rV(x, t) = max
u

{
π(x, u, t) + ∂xV · f (x, u, t) + ∂tV(x, t)

}
.

Key point: HJB is just the continuous-time envelope condition.
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HJB with Poisson arrival and creative destruction
In growth models with innovation, the state can change discretely via Poisson events.
Suppose:
▶ flow profit: π(t)
▶ discount rate: r
▶ innovation arrival with intensity λ(t)
▶ replacement probability upon arrival

Then the Bellman equation over ∆t becomes:

V(t) = π(t)∆t + e−r∆t
[
(1 − λ(t)∆t)V(t + ∆t) + λ(t)∆t Vnew(t + ∆t)

]
.

Rearranging and taking ∆t → 0 yields:

rV(t)− V̇(t) = π(t)− λ(t)
(
V(t)− Vnew(t)

)
.

Economic meaning:
▶ π(t): flow monopoly profits
▶ λ(t) term: expected capital loss from creative destruction

This is exactly the structure used in the paper.
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From the general HJB to a per-idea HJB

Start from the standard HJB with Poisson creative destruction:

rVi(t)− V̇i(t) = πi(t)− λi(t)
(
Vi(t)− Vnew

i (t)
)
.

Key modeling choice in this paper:
▶ Vi(t) is defined as the value per frontier idea
▶ Frontier ideas are replaced one-for-one by new ideas
▶ All frontier ideas are ex ante symmetric

As a result, creative destruction does not destroy value at the sector level: it reallocates
value across ideas.
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Why the hazard term disappears

Let Ki(t) denote the mass of frontier ideas in sector i.
▶ Total sector value: Ki(t)Vi(t)
▶ Total sector profits: Πi(t)
▶ Profit per frontier idea: πi(t) = Πi(t)/Ki(t)

Innovation replaces old ideas with new ones:
▶ individual ideas lose value,
▶ but the mass of ideas Ki(t) grows over time.

Tracking value per idea absorbs creative destruction into Ki(t). The HJB therefore simplifies
to:

r(t)Vi(t)− V̇i(t) =
Πi(t)
Ki(t)

.

Interpretation: faster growth of Ki(t) shortens effective monopoly duration.
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Value function dynamics: HJB-style ODE

Value per frontier idea evolves as:

r(t)Vi(t)− V̇i(t) =
Πi(t)
Ki(t)

.

Interpretation of the RHS:
▶ Πi(t) is total sector profits (a revenue share times expenditure).
▶ Divide by Ki(t) because Ki is the measure of frontier draws (“mass” of ideas).
▶ Faster innovation (higher Ki growth) shortens expected monopoly duration

(competition effect).
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Step 1: Define the object and the survival probability

Fixed varieties, evolving frontier distribution. Varieties are v ∈ [0, 1] (fixed). In sector i,
the frontier productivity across varieties has Fréchet CDF

Fi(Q, t) = Pr(Qiv(t) ≤ Q) = exp
(
− Ki(t)Q−θ

)
,

where Ki(t) is the Fréchet scale (“knowledge stock”) and θ > 0 is the shape/dispersion.

Key max-stability implication. The frontier at date s > t is the max of:
▶ the incumbent frontier draw at t, equal to Q;
▶ all new candidate draws arriving between t and s.

By Fréchet max-stability, the max of new draws over (t, s] is Fréchet with scale
Ki(s)− Ki(t), hence:

Pr(no new draw exceeds Q between t and s | Q) = exp
(
− (Ki(s)− Ki(t))Q−θ

)
.

This is the survival probability of an idea with quality Q from t to s.
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Step 2: Value of an incumbent with quality Q and aggregation over Q
Let Πi(s) be total sector profits at time s. Since the frontier distribution is indexed by
Ki(s), the model’s accounting implies the flow profit per frontier draw is

πi(s) ≡
Πi(s)
Ki(s)

.

(See the appendix definition of Vi and the step converting profits into Πi(s)/Ki(s).)

Value conditional on frontier quality Q at time t:

Ṽi(Q, t) =
∫ ∞

t
πi(s) exp

(
−
∫ s

t
r(τ) dτ

)
︸ ︷︷ ︸

discount

exp
(
− (Ki(s)− Ki(t))Q−θ

)︸ ︷︷ ︸
survival

ds.

Value per frontier idea (average over frontier draws at t):

Vi(t) ≡ EQ∼Fi(·,t)
[
Ṽi(Q, t)

]
=
∫ ∞

t
πi(s) e−

∫ s
t r(τ) dτ EQ∼Fi(·,t)

[
e−(Ki(s)−Ki(t))Q−θ

]
︸ ︷︷ ︸

⋆

ds.
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Step 3: Compute the expectation (⋆) explicitly
We compute

(⋆) = EQ∼Fi(·,t)

[
e−(Ki(s)−Ki(t))Q−θ

]
=
∫ ∞

0
e−(Ki(s)−Ki(t))Q−θ

dFi(Q, t).

Using Fi(Q, t) = exp(−Ki(t)Q−θ), we have

dFi(Q, t) = d
(

exp(−Ki(t)Q−θ)
)

.

Now apply the change of variables y ≡ Q−θ . Then Fi(Q, t) = exp(−Ki(t)y) and (as a
Stieltjes integral)∫ ∞

0
e−(Ki(s)−Ki(t))Q−θ

dFi(Q, t) =
∫ ∞

y=0
e−(Ki(s)−Ki(t))y d

(
e−Ki(t)y

)
.

But d(e−Ki(t)y) = −Ki(t)e−Ki(t)y dy, hence

(⋆) =
∫ ∞

0
e−(Ki(s)−Ki(t))y Ki(t)e−Ki(t)y dy = Ki(t)

∫ ∞

0
e−Ki(s)y dy =

Ki(t)
Ki(s)

.

This is the crucial “competition effect” term: faster growth in Ki lowers survival.
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Step 4: Close form for Vi(t) and the HJB-style ODE
Plugging (⋆) = Ki(t)/Ki(s) into the expression for Vi(t):

Vi(t) =
∫ ∞

t
πi(s) e−

∫ s
t r(τ) dτ Ki(t)

Ki(s)
ds =

∫ ∞

t

Πi(s)
Ki(s)

e−
∫ s

t r(τ) dτ ds.

This is precisely the appendix definition (eq. (77) there) and it implies eq. (23).

Differentiate to get the ODE. Let D(t, s) ≡ e−
∫ s

t r(τ) dτ . Then

Vi(t) =
∫ ∞

t

Πi(s)
Ki(s)

D(t, s) ds.

Differentiate using Leibniz rule:

V̇i(t) = −Πi(t)
Ki(t)

+
∫ ∞

t

Πi(s)
Ki(s)

∂

∂t
D(t, s) ds.

Since ∂
∂t D(t, s) = r(t)D(t, s), we obtain

V̇i(t) = −Πi(t)
Ki(t)

+ r(t)Vi(t) =⇒ r(t)Vi(t)− V̇i(t) =
Πi(t)
Ki(t)

.

This shows the result in the slide “Value function dynamics: HJB-style ODE.”
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Profit decomposition (price, competition, income effects)

Using demand + pricing, the paper shows relative profits per idea satisfy:

Πi(t)/Ki(t)
Πj(t)/Kj(t)

=
Kj(t)
Ki(t)︸ ︷︷ ︸

competition

·
(Kj(t)

Ki(t)

)1−σ

︸ ︷︷ ︸
price

·C(t)(1−σ)(εi−εj)︸ ︷︷ ︸
income

.

Three effects:
▶ competition: faster innovation lowers duration
▶ price: higher K lowers price index (depending on σ)
▶ income: nonhomotheticity drives shifting demand
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Sectoral price index: definition

Variety price under Bertrand competition with fringe vintage:

Piv(t) =
χ

Qiv(t)
.

Sectoral output uses a log aggregator:

Yi(t) = exp
(∫ 1

0
log Xiv(t) dv

)
, Xiv(t) = Qiv(t)Liv(t).

Hence the sectoral price index is the geometric mean:

log Pi(t) =
∫ 1

0
log Piv(t) dv = log χ −

∫ 1

0
log Qiv(t) dv.

With a continuum of varieties and i.i.d. frontier draws:

log Pi(t) = log χ − E[log Qi(t)].
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Log-moment of the Fréchet distribution

Suppose frontier productivities satisfy:

Fi(Q, t) = exp
(
−Ki(t)Q−ς

)
.

Define the transformation:
U ≡ Ki(t)Q−ς.

Then:
Pr(U > u) = Pr

(
Q < (Ki/u)1/ς

)
= Fi

(
(Ki/u)1/ς, t

)
= e−u,

so:
U ∼ Exp(1).

Hence:
log Q =

1
ς
(log Ki(t)− log U) , E[log U] = −γE,

where γE is the Euler–Mascheroni constant.
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Closed-form sectoral price index

Taking expectations:

E[log Qi(t)] =
1
ς
(log Ki(t) + γE) .

Substitute into the price index:

log Pi(t) = log χ − 1
ς
(log Ki(t) + γE) .

Exponentiating:

Pi(t) = χ exp
(
−γE

ς

)
Ki(t)−1/ς.

Key implication: all time-variation in prices is driven by Ki(t).
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Price inflation and knowledge growth

Let pi(t) ≡ log Pi(t) and ki(t) ≡ log Ki(t).
From the closed form:

pi(t) = log χ − γE
ς

− 1
ς

ki(t).

Differentiate:

ṗi(t) = −1
ς

k̇i(t) = −1
ς

K̇i(t)
Ki(t)

.

Interpretation: faster idea accumulation ⇒ faster relative price declines.
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Model objects and observables

Model objects (sector i):
▶ Ki(t): Fréchet scale of frontier productivities (knowledge stock)
▶ K̇i(t)/Ki(t): growth rate of frontier knowledge
▶ ϕij: applicability of knowledge from sector j to sector i
▶ βi: elasticity of innovation productivity to external knowledge
▶ Ψi(t): patenting cutoff (minimum quality improvement to patent)

Observed data:
▶ Patent counts by sector and year
▶ Citation shares across sectors
▶ Sectoral R&D expenditure
▶ Sectoral output and expenditure shares

Goal: map patents and citations into Ki(t), βi, ϕij, and Ψi(t).
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Patents as selected frontier innovations
In the model, innovation arrivals are Poisson. Each arrival generates a quality
improvement:

∆ ≡ Qnew

Qold
.

Assumption (tail behavior): Quality improvements have Pareto tails:

Pr(∆ ≥ x) = x−θ , x ≥ 1.

Patenting rule: An innovation in sector i is patented if:

∆ ≥ Ψi(t),

where Ψi(t) ≥ 1 is a sector– and time–specific patenting cutoff.
Probability an innovation is patented:

Pr(patenti | t) = Pr(∆ ≥ Ψi(t)) = Ψi(t)−θ .

Key implication: Patents are a selected sample of frontier innovations.
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Recovering innovation rates from patent data
Let:
▶ K̇i(t) = flow of frontier innovations (model object),
▶ PATi(t) = observed patent counts (data).

Because only a fraction Ψi(t)−θ of innovations are patented:

PATi(t) = Ψi(t)−θ K̇i(t).

Equivalently,
PATi(t)

K̇i(t)
= Ψi(t)−θ .

Interpretation:
▶ Patent counts do not identify K̇i(t) directly.
▶ They identify K̇i(t) up to a selection wedge Ψi(t)−θ .
▶ Changes in patenting standards or behavior are absorbed by Ψi(t).

Empirical strategy: Allow Ψi(t) to vary over time and sector, and use the model structure
to separately discipline K̇i(t).
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How the knowledge stock Ki(t) is computed
Step 1: What patents measure (flows). Patent counts in sector i at time t satisfy:

PATi(t) = Ψi(t)−θ K̇i(t),

▶ K̇i(t) = flow of frontier innovations (model object),
▶ Ψi(t) = patenting cutoff (selection into patents),
▶ θ = Pareto tail parameter.

Thus, patents identify innovation flows up to a selection wedge.

Step 2: Back out innovation flows. Given Ψi(t),

K̇i(t) = Ψi(t)θ PATi(t).

Step 3: Accumulate flows into a stock.
The Fréchet scale (knowledge stock) is constructed as:

Ki(t) = Ki(0) +
∫ t

0
K̇i(s) ds = Ki(0) +

∫ t

0
Ψi(s)θ PATi(s) ds.

Key point: Ki(t) is a latent stock inferred by accumulating patent-adjusted innovation
flows. Its level is identified up to a normalization, but ratios and growth rates are pinned
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Citation probabilities and applicability parameters

In the model, a new innovation in sector j builds on the best available idea:

i = arg max
k

{
Q̃ok
ϕjk

}
.

With Fréchet frontier draws, the probability that sector j cites sector i is:

πij(t) = Pr(i | j) =
ϕ−θ

ij Ki(t)

∑k ϕ−θ
kj Kk(t)

.

Key result: Citation shares satisfy a gravity equation in knowledge stocks and applicability
costs.
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Estimating applicability ϕij from citations

Taking logs relative to within-sector citations:

log πij(t)− log πjj(t) = −θ log ϕij + log Ki(t)− log Kj(t).

Empirical implementation:
▶ πij(t) observed from citation matrices
▶ Ki(t) recovered from patent-adjusted innovation flows
▶ θ taken from the literature or estimated

This identifies ϕij up to normalization ϕjj = 1.
Interpretation:
▶ lower ϕij ⇒ ideas from i are more applicable to j
▶ manufacturing typically has low ϕij across many sectors
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Recovering spillover elasticities βi
The innovation technology in sector i is:

K̇i(t) = ηiZi(t)1−α

(
∑

j
ϕ−θ

ij Kj(t)

)βi

.

Define the spillover index:
Si(t) ≡ ∑

j
ϕ−θ

ij Kj(t).

Taking logs and differences:

∆ log K̇i(t) = (1 − α)∆ log Zi(t) + βi∆ log Si(t) + ∆ log ηi.

Given:
▶ K̇i(t) from patent-adjusted innovation rates
▶ Zi(t) from R&D data
▶ Si(t) from citation-weighted knowledge stocks

we identify the spillover elasticity βi.
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Mapping data to model objects (corrected)

Model object Identified from data
PATi(t) Observed patent counts (data)
K̇i(t) Patent counts adjusted for selection Ψi(t)
Ki(t) Time integral of K̇i(t) (normalized)
Ψi(t) Patenting intensity conditional on R&D and output
ϕij Cross-sector citation shares πij(t)
βi Response of K̇i(t) to spillover index Si(t)

Interpretation:
▶ Patents identify flows of frontier innovation, not knowledge stocks.
▶ Knowledge stocks Ki(t) are inferred by accumulating those flows.
▶ Citations depend on relative Ki(t), so normalization does not matter.
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State variables, controls, and equilibrium system

State variables (knowledge stocks):

ki(t) ≡ log Ki(t), i = 1, . . . , I.

Controls:

c(t) ≡ log C(t), λi(t) ≡
Zi(t)
Z(t)

, ∑
i

λi(t) = 1.

Equilibrium dynamics can be written compactly as:

ẋ(t) = f
(
x(t), u(t), t; θ

)
,

where:
x(t) = (k1, . . . , kI, c), u(t) = (λ1, . . . , λI−1).
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Why collocation instead of shooting

Main challenges:
▶ High-dimensional controls λi(t)
▶ Non-autonomous dynamics (expenditure shares shift over time)
▶ Stable manifold selection is non-trivial

Collocation strategy:
▶ Approximate unknown paths with smooth splines
▶ Enforce equilibrium conditions pointwise on a grid
▶ Impose initial and terminal (CGP) conditions directly

This avoids instability and sensitivity typical of shooting methods.
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Spline approximation of paths
Choose a horizon [0, T] and knots:

0 = τ0 < τ1 < · · · < τM = T.

Approximate paths using B-splines:

ki(t) ≈
Mk

∑
m=1

aimBm(t), c(t) ≈
Mc

∑
m=1

bmBm(t).

Enforce simplex constraints on R&D shares via softmax:

λi(t) =
exp (∑m dimBm(t))

∑j exp
(
∑m djmBm(t)

) .

Derivatives are analytical:

k̇i(t) = ∑
m

aimḂm(t), ċ(t) = ∑
m

bmḂm(t).
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Collocation residuals

Model-implied dynamics:

k̇i(t) = gi(k(t), c(t), λ(t), t; θ), ċ(t) = gc(·).

Define residuals at time t:

Rk,i(t) = k̇approx
i (t)− gi(·), Rc(t) = ċapprox(t)− gc(·).

Only I − 1 share equations are needed, since ∑i λi(t) = 1 is enforced by construction.
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Objective function: nonlinear least squares

Choose collocation nodes {tn}N
n=1 (e.g. Gauss–Lobatto).

Solve:

min
a,b,d

N

∑
n=1

wn

[
I

∑
i=1

Rk,i(tn)
2 + Rc(tn)

2 +
I−1

∑
i=1

Rλ,i(tn)
2

]
.

This is a standard nonlinear least-squares problem over spline coefficients.

49/55



Boundary and terminal conditions

Initial conditions (from calibration/data/searched over really in the code):

ki(0) = ki0.

Terminal anchoring to the constant-growth path (CGP):

k̇i(T) ≈ k̇CGP
i , ċ(T) ≈ g∗, λi(T) ≈ λCGP

i .

Impose via penalty terms:

ΩT = ωk ∑
i
(k̇i(T)− k̇CGP

i )2 + ωc(ċ(T)− g∗)2 + ωλ ∑
i
(λi(T)− λCGP

i )2.
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Choice of knots and collocation nodes

Practical recommendations:
▶ Use a non-uniform knot grid:

▶ dense near t = 0 (fast transitions)
▶ sparse near T (CGP convergence)

▶ Typical choice: M = 15–25 knots per state
▶ Use Gauss–Lobatto nodes within each interval

This balances accuracy and computational cost.
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Normalization for numerical stability

Normalize by CGP trends:

k̃i(t) = ki(t)− k̇CGP
i t, c̃(t) = c(t)− g∗t.

Then terminal conditions become:

˙̃ki(T) ≈ 0, ˙̃c(T) ≈ 0.

This dramatically improves conditioning and convergence.
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Jacobian computation and solvers

Implementation tips:
▶ Use automatic differentiation if available
▶ Otherwise, exploit analytical derivatives of splines
▶ Feed Jacobian to a trust-region or Levenberg–Marquardt solver

Collocation works best with:
▶ accurate Jacobians
▶ tight but not excessive terminal penalties
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Diagnostics and convergence checks

Always report:
▶ max residual norm: maxn ∥R(tn)∥
▶ drift at terminal time: ∥ẋ(T)− ẋCGP∥
▶ robustness to:

▶ more knots
▶ longer horizon T
▶ alternative initial guesses

A good solution is stable to all three.
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Takeaways

▶ Fréchet structure gives closed-form prices and clean dynamics
▶ Transitional dynamics are smooth but high-dimensional
▶ Collocation turns equilibrium into a transparent residual-minimization problem
▶ Every numerical step has an economic interpretation
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